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In 2023, carbon dioxide (CO2) emissions from the global power sector were almost 15 Gt—roughly 

28% of greenhouse gas (GHG) emissions globally.1,2 

The power sector will play a central role in decarbonizing the global economy. Most strategies for 

deep decarbonization foresee growing reliance on the power sector as vehicles, industry, space 

heating and other sectors shift from fossil fuels to electricity. In the Net Zero by 2050 scenario 

released by the International Energy Agency (IEA), for example, the share of electricity in final energy 

use increases from 20% in 2020 to 50% in 2050.3 The amount of final energy use changes very little 

during this period, so the electric power sector more than doubles in size in the decades ahead in 

this scenario. Other scenarios are similar.4  

For global climate change goals to be achieved, the power sector must grow and decarbonize at the 

same time. The scale of the challenge is enormous. 

▪ Despite the extraordinary fall in the price of renewable power in the past 30 years, fossil fuels

still dominate the global power sector. In 2023, fossil fuels (coal, oil and natural gas) generated

61% of the electricity produced globally. (In 1990, the figure was 65%.)5

▪ The impressive and record-breaking deployment of renewable power in the past decade has

not been enough to meet the growth in the world’s power demand in the same period.6

▪ Trillions of dollars are currently invested in legacy fossil fuel infrastructure globally. The

average life of much of this infrastructure is several decades.7-9

▪ IEA analysis suggests that achieving net-zero emissions by mid-century will require global

power sector investment to surge to roughly $3 trillion by 2030 (almost triple current levels)

and stay at or near that level for decades.3,10

A challenge of this magnitude requires 

new technologies and approaches. The 

rapid advances in artificial intelligence 

(AI) have the potential to make a 

meaningful difference.11,12 Indeed they 

are already starting to do so. For 

example: 

▪ AI algorithms are predicting solar 
radiation and wind speeds more 
accurately than traditional 
methods, allowing for better 
scheduling and dispatch of 
renewable energy.
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▪ Dynamic line rating and other AI-driven techniques have started to optimize transmission and 
distribution of electricity, ensuring that renewable energy is transmitted efficiently from 
generation sites to consumers.

▪ AI is facilitating demand response programs by analyzing consumption patterns and 
incentivizing consumers to shift their usage to periods of high renewable energy generation.

▪ AI is accelerating innovation in energy storage, evaluating new battery chemistries far more 
rapidly than traditional methods and accelerating deployment of vehicle-to-grid (V2G) and 
other distributed storage technologies.13,14

These steps are just a beginning. In the years ahead, AI could do much more to help reduce GHG 

emissions from the power sector, including in permitting reform, optimal power flow analyses, V2G 

charging and more.  

At the same time, the rapid growth of AI creates challenges for decarbonizing the power sector. AI 

currently uses less than 1% of electricity generated globally, but power demand for AI is growing 

quickly. In many locations, demand for new data centers—driven in part by AI—is increasing faster 

than low-carbon power sources can be deployed. Power demand from new data centers is creating 

challenges for some utilities that are committed to decarbonizing their generation mix in the years 

ahead. This topic is discussed in more detail in Chapter 15 of this Roadmap.  

This chapter explores how AI can contribute to decarbonizing the power sector. The chapter begins 

by exploring AI’s current and potential impact in decarbonizing four parts of the power sector: (1) 

generation infrastructure, (2) transmission and distribution networks, (3) end-use sectors and (4) 

energy storage. The chapter then turns to barriers, risks, concluding thoughts and recommendations. 

(This chapter mostly uses the term 

“AI” when referring to programs that 

perform tasks through inference of 

patterns and learning from data. In 

the technical literature, the term 

“machine learning” (“ML”) is more 

common.) 
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A. Generation 

Planning and operating power generation infrastructure are complex tasks. Many factors require 

attention, including renewable resource availability, permitting constraints and the condition of 

physical assets. AI can help improve performance, speed deployment timelines and cut costs. 

i. Planning 

AI can be especially valuable in planning large-scale renewable projects: 

▪ AI can recommend the optimal size and location of solar power projects, which requires 

complex calculations on topics such as weather patterns, equipment type and grid 

constraints.15,16 

▪ AI can help with wind farm 

planning, which requires complex 

calculations on topics such as 

terrain, wind speed and direction, 

and turbine type.17,18 

▪ AI can help accelerate deployment 

of non-conventional renewables, 

including wave energy19 and 

geothermal energy.20 In geothermal 

energy, AI can help improve 

numerical reservoir modeling, 

exploration, drilling and 

production.19 

Permitting timelines are often a challenge for renewable projects. Large language models (LLMs) can 

extract text from past permit applications and decisions to help applicants improve application 

quality (see Benes et al., 202421 at p. 12–16). LLMs also help permitting authorities review permits 

more quickly and thoroughly (see e.g., Symbium22). At the US Department of Energy (DOE), several 

National Labs have initiated a pilot project using foundation models and other AI to systematically 

improve siting permitting and environmental reviews for renewables projects.23 

AI can also help accelerate innovation in nuclear reactor design, speed the nuclear permitting 

process and cut costs in the operations of nuclear reactors.24 (These topics are discussed in Chapter 

10 of this Roadmap.) 

ii. Operations 

After renewable generation capacity is installed, operational decisions can have significant impacts 

on power output and costs. Predicting variable solar and wind power is one of the most well-studied 

topics in the use of AI in the power sector (see Figure 3-1).25 For example: 

▪ AI can predict weather relevant to wind/solar generation, such as cloud cover,26 wind speed27 

and solar radiation28 
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▪ AI can integrate weather forecasts and power production forecasts (these forecasts typically 

focus on short-term predictions (<72 hours, mostly 24 hours) that rely on robust historical and 

real-time data)29 

▪ Other applications for maximizing renewable power generation using AI include reinforcement 

learning control for wind turbines,30,31 solar system operation29 and solar shading32 

Recent advances in AI-based weather forecasting are especially promising. In traditional weather 

forecasting, numerical models use sophisticated physics equations and historical weather data to 

predict atmospheric behavior. This is computationally expensive, requiring supercomputers for each 

prediction. In newer AI-based weather forecasting, ML techniques are used to train a model on 

historical weather data. Once the model is trained, the computational requirements to forecast 

atmospheric behavior are significantly less than with traditional methods.  

Researchers around the world have made significant performance improvements using these new AI-

based tools. In July 2023, scientists at Huawei Cloud released a paper in Nature33 presenting AI-

driven weather forecasting models that outperformed numerical methods. In November 2023, 

Google DeepMind released a paper34 showing even more accurate results, especially for medium-

range weather forecasts. Government agencies are starting to incorporate these new methods into 

their standard forecasts.35  

As AI-based weather models become more accurate and less expensive, the use cases for these 

types of models will grow. In the power sector, AI-based weather models can increase output from 

solar and wind farms, help prepare for extreme weather events and contribute to system resilience. 

In North America, for example, AI is being used to help predict wildfires, synthesizing satellite images 

and LIDAR feeds in ways that can help grid operators make decisions on managing transmission lines 

through forests during periods of high wildfire risk.36 (See Chapter 14 of this Roadmap, which 

explores how AI can help respond to extreme weather events.) 

 

Figure 3-1. AI predictions in renewable energy. 
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AI can be especially helpful in operating rooftop solar photovoltaic (PV). AI can predict the power 

generation potential of rooftop solar panels,37 generate forecasts38 and reduce customer acquisition 

costs.39  

Federated learning (FL)—a special type of AI—can be very useful in operating distributed power 

generation infrastructure. Federated learning is an AI technique where multiple decentralized 

devices collaboratively train a shared model while keeping the training data on the devices 

themselves, preserving data privacy and security.40 FL is well-suited to tasks such as predicting 

rooftop solar generation41 and can perform a number of tasks in the “smart city” and “smart grid” 

context.42 

AI can also be used for preventive maintenance at power generation infrastructure. Data-driven 

predictions of maintenance and repair needs can minimize cost and production downtime. These 

predictions can be especially useful at wind power facilities, which are often located in difficult 

environments and must endure high wind speed, extreme temperatures and other challenges, 

making maintenance expensive.43 AI can be used to schedule preventive maintenance, reducing 

turbine failure and repair costs.43,44 AI can also be used to improve maintenance at solar,45 nuclear46 

and hydro47 power plants.  

Finally, AI can assist with integrating the electric grid and emerging low-carbon hydrogen networks. 

Green hydrogen production will consume enormous power. Optimizing integration of the electric 

grid with green hydrogen production can deliver significant savings.48 AI can help optimize green 

hydrogen production by predicting renewable power potential,49 curtailed renewable energy50 and 

water sustainability.51 AI can also help plan hydrogen refueling stations, optimizing station-based 

production and storage.52 AI can be used to integrate renewable power with hydrogen-energy 

storage to increase grid stability and lower peak loads.53 

B. Transmission and Distribution 

Investing in transmission and distribution infrastructure is essential for integrating high volumes of 

renewable power into the electric grid. Renewable resources are often located far away from load 

centers, requiring long-distance transmission. Planning and operating this infrastructure involves 

solving complicated nonlinear 

problems. AI tools can help with 

many aspects of electricity 

transmission and distribution—

cutting costs, increasing capacity 

and helping reduce GHG 

emissions.54  

AI can be especially helpful with 

transmission expansion planning 

(TEP). Determining the best 

location and capacity of new 

transmission lines involves large-
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scale complex optimization problems in which finding a feasible solution can be difficult.55 These 

difficulties, along with a large increase in the number of interconnection requests, are causing 

significant delays and uncertainties in permitting renewable power projects in the United States and 

other geographies.  

Several studies highlight the potential for AI to contribute to TEP: 

▪ Borozan et al. (2023) integrated AI with well-established TEP decomposition methods to 

improve computational efficiency while preserving solution quality56 

▪ Wang et al. (2021a and b) showed that AI can be used to solve multi-stage TEP based on a 

static model, which can be flexibly adjusted and incorporate uncertainties in wind power and 

demand projections57,58 

▪ Fu et al. (2020) studied the stochastic optimal planning of distribution networks using AI, 

considering both renewable power and demand variability59 

AI can be especially helpful in optimal power flow (OPF) analysis—an integral part of TEP that 

evaluates the most efficient and reliable flow of electricity through a transmission network while 

meeting operational constraints and minimizing costs. AI can significantly improve the process of 

solving alternating current optimal power flow (AC-OPF) problems by evaluating transmission 

expansion results much more efficiently than current methods.60,61 This improvement not only 

increases accuracy over traditional direct current optimal power flow (DC-OPF) systems but also has 

the potential to make transmission permitting faster. Leveraging AI for AC-OPF can lead to better 

transmission expansion planning, helping reduce emissions from the power system.62,63 

Another promising application of AI is for dynamic line rating -- a method of determining the 

maximum capacity of transmission lines based on current weather and line conditions instead of 

static, conservative estimates.64 Dynamic line rating can increase the capacity of transmission lines by 

at least 30%.65,66 Increasing the capacity of existing transmission lines is especially valuable where 

permitting new transmission lines to bring renewable power to load centers is difficult. AI-driven 

dynamic line rating can help maximize utilization of renewable resources and support integration of 

more renewable power into the electric grid.67  

AI can also help distribution network operations. Historically, the distribution grid was too complex to 

be mapped accurately, leading to difficulties with fault detection. Recent progress in digitalization 

has increased the observability and controllability of the distribution grid, enabling AI to assist in fault 

detection.68 Studies have shown that AI methods outperform traditional methods in fault detection 

accuracy but demand large amounts of data and significant computational resources.68,69 Better fault 

detection can reduce GHG emissions by minimizing downtime, reducing the need for carbon-

intensive backup power and ensuring grid stability, which supports integration of renewable 

power.70,71  

In conclusion, AI is being used in transmission and distribution infrastructure to improve expansion 

planning, renewables integration and core operations. As costs decline and AI capabilities continue 

to improve, AI can play an increasingly important role in transmission and distribution.72 
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Figure 3-2. Power grid with data transfer 

 

C. End-Use Devices 

“End-use devices” include appliances, lighting, electric vehicles (EVs), air conditioning and any other 

equipment that consumes electricity. In 2023, there were roughly 13 billion end-use devices with 

automated sensors and controls globally.73 Better management of these end-use devices can help 

significantly improve energy efficiency and reduce GHG emissions. 

AI can play a central role in managing end-use devices. Indeed, AI tools are essential for leveraging 

the enormous quantities of data from end-use devices into performance gains. AI can predict energy 

demand patterns and adjust device settings to improve efficiency, cut energy use and reduce 

emissions. AI can optimize operation of smart devices, such as appliances, lighting systems and 

thermostats, to ensure these devices consume less energy during periods of high demand or low 

renewable power supplies. AI can facilitate demand response programs, virtual power plants, EV 

charging and peer-to-peer energy trading.  

Demand prediction using AI already exhibits great potential. AI can predict general energy demand 

patterns74 and demand patterns for specific sectors, such as buildings75 and EV charging.76 These 

demand predictions can be used for system operations, including for unit commitment (short-term) 

and system planning (long-term). 

Aside from passively predicting electricity demand, AI can also be used to actively reshape demand 

profiles. In demand response programs, volunteers agree to limit electricity consumption for 
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financial reward. This helps reduce GHG emissions by avoiding the need to turn on peaker plants for 

additional electricity generation. Antonopoulos et al. (2020) reviewed AI approaches for demand 

response, finding that AI can capture human feedback and motivate electricity users to participate in 

demand response programs.77 Demand-side AI tools require significant data with high 

spatiotemporal resolution, which requires enabling infrastructure (such as smart meters) and can 

create privacy concerns. 

AI plays an especially important role in virtual power plants (VPPs) -- networks of decentralized, 

distributed energy resources including end-use devices that are integrated and managed using 

advanced software.78,79 VPPs reduce GHG emissions by helping integrate renewable power into 

electric grids and (like demand response programs) helping limit the need for peaker plants. Many 

VPPs combine AI-driven demand predictions and the ability to manipulate the power demand of end-

use devices:  

▪ Several US states facing peak demand problems have programs to combine consumer assets, 

including home batteries, smart thermostats, EVs and more, into a VPP. By controlling these 

devices in aggregate and making small changes to their operational programming, utilities and 

retailers can shift load from times of peak demand and peak prices, reducing overall costs.80 

▪ In Japan, the Kyocera Corporation has implemented an AI-driven VPP system that aggregates 

energy from numerous distributed sources, including solar panels and battery storage, to 

optimize energy distribution and balance supply and demand in real time.81  

▪ In Germany, Next Kraftwerke operates a VPP that uses AI to manage over 10,000 decentralized 

energy units.82 

▪ One report suggests the savings from VPPs in California could help utilities save up to $755 

million in power system costs, while consumers could save up to $550 million per year by 2035 

if the current trajectory of VPP deployment continues.83 

AI can be especially helpful with EV charging. AI tools can help optimize EV charging station locations, 

predict EV power demand, increase EV charger utilization, schedule EV charging to reduce costs and 

implement V2G programs.84-86 (See discussion of V2G programs below.) 

Finally, AI can help establish intelligent peer-to-peer energy trading platforms and predictive 

analysis.87,88 Peer-to-peer energy can help reduce GHG emissions in several ways, such as by allowing 

households and businesses with solar PV panels to sell excess clean energy directly to other 

consumers and by reducing the distance electricity needs to travel, cutting transmission and 

distribution losses.89,90 

In conclusion, AI could play an important role in managing end-use devices—helping to optimize 

their operation, increase energy efficiency and reduce GHG emissions.  
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D. Energy Storage 

As more solar and wind power is 

deployed, energy storage is becoming 

an essential part of the electric grid. 

Energy storage balances temporal 

mismatch in supply and demand, 

serving as both generation and load. AI 

can help plan for energy storage, 

schedule its operation and optimize its 

lifetime value. AI can also help 

accelerate innovation in energy 

storage. 

Energy storage is growing significantly around the world. In the United States, the investment tax 

credit for stand-alone storage in the Inflation Reduction Act of 2022 creates powerful new incentives 

for utility scale battery storage, and deployment is growing rapidly.91,92 In China, battery storage 

featured prominently in the 14th Five Year Plan (2021–2025), which directed more than 100 billion 

RMB to the market. In 2023, newly installed capacity was nearly 50 GWh, an increase of more than 

60% from the end of 2022.93 In Europe, battery storage installations are led by the United Kingdom, 

Germany and Italy, where policy incentives and high energy prices are creating ideal market 

conditions for rapid deployment, especially alongside renewable power generation.94,95 

Types of energy storage systems include (1) electrochemical storage, such as lithium-ion batteries, 

flow batteries and capacitors; 2) pumped hydro energy; 3) chemical storage, such as hydrogen; 4) 

thermal storage, such as molten salt, paraffin and metals and 5) mechanical storage, such as 

flywheels and compressed air.96  

AI can help integrate energy storage into power grids, predicting when renewable power will be 

curtailed and supporting energy storage scheduling more broadly.50,97,98 AI can also help battery 

owners plan for maintenance and replacement of energy storage assets.99,100 

AI is especially well-suited to energy storage due to the dynamic nature of the optimization needed 

for battery management. Battery storage operators must consider many factors in making decisions, 

including safety, market signals and weather at the site of related solar and wind power facilities. 

Multi-factor models with this level of complexity are well-suited to AI algorithms for finding optimal 

variables on very short timeframes. Many AI algorithms are fast to train and deploy and can be very 

effective in helping operators respond to real-time market conditions to maximize revenue and 

optimize asset usage. 

AI has a range of other benefits for energy storage, including preventive maintenance and 

optimization of consumable components, such as rolling bearings of flywheel-battery hybrid 

storage.101 AI can be used to optimize combined systems, such as those with wind, pumped hydro 

and hydrogen102; integrate price and energy forecasts for hydrogen energy storage operation and 

control103; and (as discussed in Chapter 13) accelerate innovation in battery chemistry. 
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EVs have significant potential as distributed energy storage, sometimes referred to as mobile energy 

storage, V2G or vehicle-to-everything (V2X).104 Aggregated volumes of energy storage in EV are very 

large in scale—many times greater than deployed amounts of stationary storage. Most vehicles are 

parked most of the time. However, to use EVs as grid assets, grid managers must understand and pay 

careful attention to drivers’ use of their vehicles for mobility services, which will be a priority for 

most drivers in most situations. AI can be used for predicting user charging behaviors,105 helping 

solve vehicle routing optimization problems106 and improving V2G performance.107,108 AI can 

maximize the value of data collected from vehicles, facilitating deployment of V2G technologies. 

E. Barriers 

Several barriers limit the adoption of AI for decarbonization of the power sector. 

First, the use of AI in the power sector is limited by poor data quality and governance. The accuracy 

and efficacy of any AI modeling technique depends on clean, well-organized and well-governed data. 

Many parts of the power sector will need to invest in making their data available in an industry-

standard way. The myriad benefits of AI discussed above will be limited unless the underlying inputs 

can be cleaned, organized and deployed in a way that AI models can consume. 

In the United States, for example, standardized data (in tables with descriptions and access points 

that are the same across each organization) do not exist in the power sector today. Utilities, 

independent system operators (ISOs) and regional transmission organizations (RTOs) make data 

available in slightly different ways—across different time horizons, in different formats and with 

different frequencies—thus making it impossible to do analysis across all the relevant players in the 

power system. Private companies and the US Energy Information Administration (EIA) are doing 

some of this standardization work, but getting comparable data sets across all major US regions at a 

granular level remains very onerous from a data engineering perspective. Thoughtful governance to 

reduce privacy risks and model bias stemming from poor quality data is also essential.  

Second, the lack of AI-training in the workforce is a significant barrier. AI’s application in grid 

infrastructure requires a workforce that is knowledgeable on both the electric grid and AI. This 

knowledge base is important for research and development (R&D), technology deployment and 

policy design. The rapid advance of AI in software and technology systems will yield the best results if 

workers are equipped with a baseline of strong technical skills to understand the appropriate and 

safe use cases for AI. 

Finally, poor market design can hinder adoption of AI in the power sector. When market structures 

do not adequately reward innovation or the integration of advanced technologies like AI, utilities and 

other stakeholders may be reluctant to invest in AI-driven solutions. Fragmented markets and 

inconsistent regulations across regions can complicate the deployment of AI, limiting its potential to 

optimize energy systems, reduce emissions and enhance grid reliability.  
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F. Risks 

Deploying AI in the power sector creates a number of serious risks, including those related to bias, 

invasions of privacy, safety and security.  

First, AI can lead to biased outcomes when training data do not accurately represent real-world 

conditions. For example, an AI model trained on power system data without adequate information 

on poor communities could recommend infrastructure investments that fail to adequately serve 

those communities. A model trained on data from the Global North could produce inaccurate 

information or suboptimal outcomes when used in the Global South. Data sets from one region could 

work poorly in another region due to differences in weather conditions, topographies or other 

factors. 

Second, use of AI in the power sector could result in privacy breaches. AI systems require large 

amounts of data to function well. Data collection on topics such as energy consumption patterns and 

customer payment histories may be important for some AI applications but creates a risk of 

unauthorized access, identity theft and related problems. (This risk principally occurs with respect to 

AI in end-use devices and with distribution utilities—not with use of AI in generation, transmission or 

energy storage.)  

Third, catastrophic failures could result if an AI system recommends or makes an incorrect decision 

due to a flaw in its algorithm or an unforeseen situation. Such failures could include equipment 

damage, power outages or worse. Rigorous testing, continuous monitoring and robust fail-safe 

mechanisms are crucial to ensure the safety of AI-operated energy systems. Transparency and 

interpretability of AI models are essential to create trust in AI systems.  

Fourth, AI systems are susceptible to cyberattacks, including adversarial attacks where malicious 

actors manipulate the AI's input data to cause harmful outputs. Such attacks can compromise the 

integrity of the AI system, leading to incorrect decisions that could disrupt power supply, damage 

infrastructure or even facilitate further attacks on the grid. Robust cybersecurity measures, regular 

updates and stringent access controls are essential to protect AI systems from such threats. 

In April 2024, the US DOE released a report on Potential Benefits and Risks of Artificial Intelligence for 

Critical Energy Infrastructure, which found that: 

“while a number of significant risks exist if AI is used or deployed naïvely, most risks can be 

mitigated through best practices, putting appropriate protections around important data and 

models, and in some cases, funding further research on mitigation techniques.”109 

G. Conclusion 

In summary, AI has significant potential to help decarbonize the power sector in several areas. 

▪ Short-term predictions based on time-series data. Predictions of electricity demand, solar 

availability and wind speed are necessary for operating electric grids and power markets. 

These types of data follow certain physical laws and patterns of human behavior but are 
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intrinsically stochastic. Prediction is possible but difficult with conventional non-AI algorithms. 

AI can detect patterns in historical data that improve predictive abilities enormously. 

▪ Scenario development, such as for EV charging and renewable power deployment. These 

scenarios are important to guide grid planning, especially in light of uncertainties related to 

climate change impacts and the deployment of new technologies. If rich historical data are 

available, AI tools can help significantly with these tasks. 

▪ Improving optimization, such as for planning problems. Many power grid optimization 

problems involve work with large, nonlinear models. AI can speed computation, improve 

feature extraction and help solve “optimization unsolvable” problems, such as stochastic 

planning. Data support for these model-based problems is generally less critical than in other 

areas. 

▪ System integration and operation. The grid infrastructure is becoming more and more inclusive 

and increasingly exposed to real-time uncertainties, such as wind/solar fluctuation. Taking a 

systematic view, instead of focusing on certain grid components, is more critical than in the 

past. Furthermore, grid operations have objectives related to cost, reliability, resilience, equity 

GHG emissions. AI shows great promise in helping grid managers understand more complex 

and quickly evolving grid infrastructure. 

AI has potential application in nearly all aspects of power-sector management, including planning, 

monitoring, maintenance and operations. AI is becoming an important tool to help decarbonize the 

power sector. However, AI tools for decarbonization are not yet widely deployed. Barriers must be 

overcome and several risks must be addressed to realize AI’s full potential to contribute to power 

sector decarbonization. 
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H. Recommendations 

1. Utilities and independent power producers should use AI tools for a wide range of purposes, 

including helping to plan renewables projects, monitor the condition of power equipment, 

integrate distributed energy resources into the grid, run demand response programs and optimize 

the use of energy storage systems. In doing so, utilities and independent power producers should 

prioritize rigorous testing, continuous monitoring and robust fail-safe mechanisms, setting 

benchmarks for the transparency of AI systems.  

2. Electricity regulators should create clear regulatory frameworks to support using AI in energy 

management. These frameworks should include rates that provide cost recovery for AI-related 

investments, such as smart meters, sensors and open-source grid management software. The 

frameworks should address risks related to data privacy, safety and cybersecurity. 

3. National governments, electricity regulators and utilities should work together to develop and 

enforce data standards for all aspects of grid operations. Regional governing bodies, such as the 

US ISOs and RTOs, should prioritize standardization of data to enable cross-regional analysis. 

These data should be available in industry standard formats in free and publicly available portals 

for use in AI modeling and research. 

4. Utilities, regulatory agencies and academic experts should work together to develop AI-driven AC-

OPF (alternating current-optimal power flow) models and permitting reforms. These models 

should be used to reduce delays in the interconnection process and accelerate deployment of new 

renewable generation sources to the grid. 

5. Academic experts should emphasize geographic specificity in AI-driven weather models to 

increase the utility of weather forecasting for renewable energy production within specific 

boundaries (e.g., ISOs, climate zones). These experts should develop models that forecast within a 

smaller range than nearby weather station radii, focusing on wind direction, wind speed, solar 

radiation and cloud cover. 

6. Utilities and electricity regulators should launch programs for training workers in the power sector 

to assess and use AI-driven technologies.  

7. National governments should encourage and fund collaborative R&D projects between academic 

institutions, industry and utilities focused on AI and related applications for renewable power, 

energy efficiency and emissions reduction, including AI-driven forecasting tools and grid 

management systems. 
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